

LA-UR-21-24865

Approved for public release; distribution is unlimited.

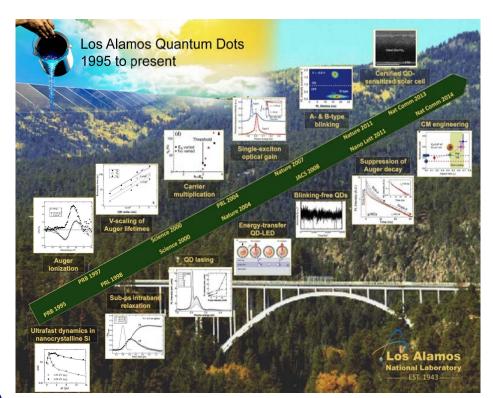
Title: Semiconductor Nanocrystals: Tiny Particles with "Quantum Powers"

Author(s): Klimov, Victor Ivanovich

Intended for: Materials Capability Review

Issued: 2021-05-19

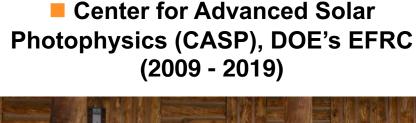
Materials


Los Alamos

Semiconductor Nanocrystals: Tiny Particles with "Quantum Powers"

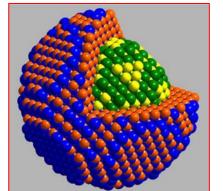
Victor I. Klimov, Chemistry Division, C-PCS

Los Alamos Quantum Dots: Twenty Five Years of Innovation...and Fun



Materials for the Future

■ Center for Integrated
Nanotechnologies (CINT), DOE's NSRC
(2000 - ...)


Materials for the Future

LANL's Pillar: Materials for the future

Controlled functionality through:

Quantum confinement
Wavefunction engineering
Engineered surfaces &
interfaces
Controlled inter-dot coupling

LANL's Areas of Leadership

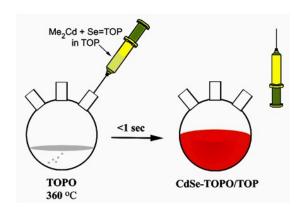
Integrated nanomaterials:

Emergent functionality at the nanoscale

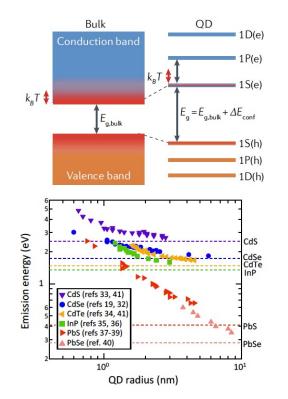
Next generation materials for manipulating photons

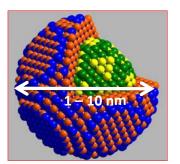
Advanced materials for optoelectronics

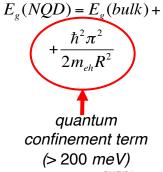
Overarching Science Questions: How to predict & control design of nanostructure and/or interfaces to achieve emergent functionalities?


How do we understand & exploit competing interactions associated with reduced dimensionality & interfaces to yield tailored properties?

Born in Colloidal Solution: Artificial Atoms with Tunable Energies

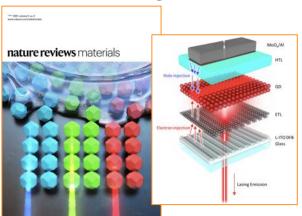


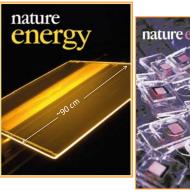

■ Fabrication: Moderatetemperature colloidal chemistry



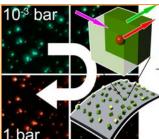
 $R = 10-50 \text{ Å}, \Delta R/R = 4-7\%$

Size-tunable electronic energies

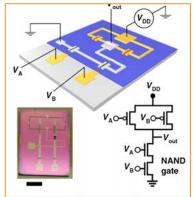

Tiny Particles...with Magic Powers

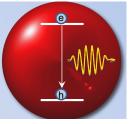

Lighting & Displays

Lasing



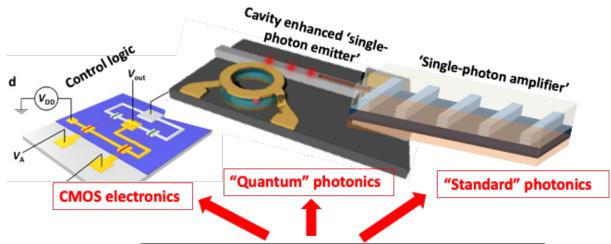
Solar energy



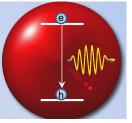


Sensing

Electronics



LDRD DR Project: Quantum Photonics with Semiconductor Nanocrystals



- Overarching Objective: To explore the utility of colloidal quantum dots as highly-versatile, solution-processible materials for implementing wavelength-selectable singlephoton emitters (SPEs) complemented by on-chip lightamplification circuits, laser sources, and logic-gate devices.
- "Single-photon emitter" (SPE): Emits exactly one photon at a designated time and all photons are quantum-mechanically identical or 'indistinguishable'

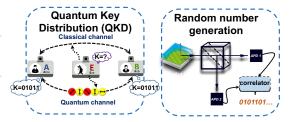
Timeline

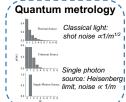
Project

Project Milestones & Timeline

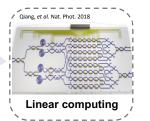
"Quantum light 101"

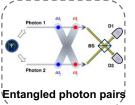
Achieving high single-Y1 photon purity, near-infrared (NIR) wavelength, high spectral stability

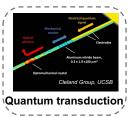

"Quantum light 201"


Expanding/enhancing QL101
Y2 capabilities: electrical pumping, coupling to cavities...

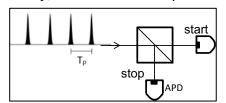
"Quantum light 301"


Achieving high excitonic coherence, photon indistinguishability, maintained at elevated temperature

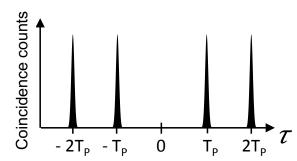

Prospective applications: High single-photon purity



Prospective applications: High excitonic coherence

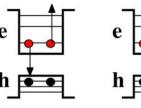


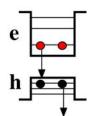
Photon Statistics & Single-Photon Purity

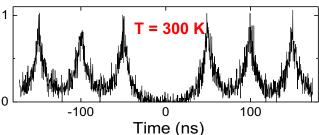


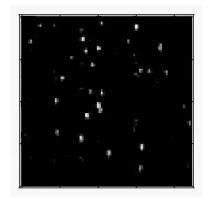
Photon statistics: Chaotic (classical), coherent (laser) & anti-bunched (quantum) light

Hanbury, Twiss & Brown experiment

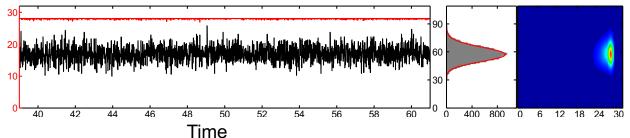

<u>Ideal single-photon emitter:</u> $g^{(2)}(0) = 0$

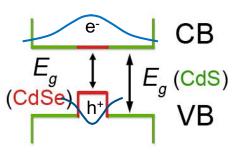


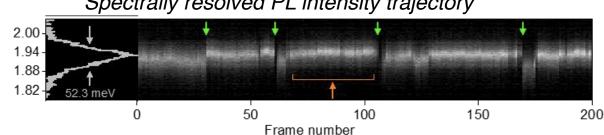

Antibunching mechanisms in colloidal QDs: Quantized Auger recombination


$$F_{\text{spp}} = 1 - g^{(2)}(0)/g^{(2)}(T) = 1 - Q_{XX}/Q_X = 1 - 4\tau_{XX}/\tau_X = 0.99$$

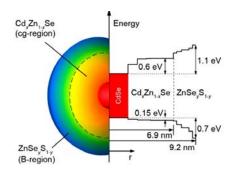
V. Klimov *et al.*, *Science* **287**, 1011 (2000)


Pros & Cons of "Giant" CdSe/CdS QDs

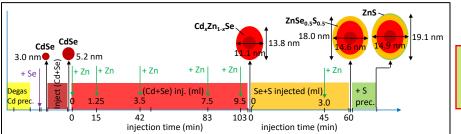

"Giant" thick-shell CdSe/CdS QDs: Nearly complete suppression of intensity fluctuations



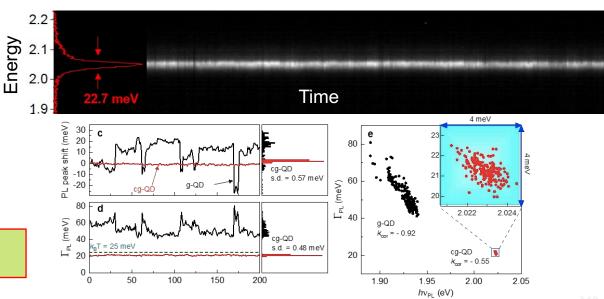
... Still significant spectral fluctuations



Fixing the Problem of Standard "Giant" QDs



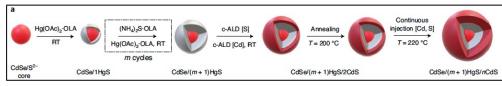
Asymmetrically strained, continuously gradedCdSe/ZnCdSe cg-QDs



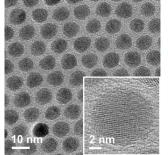
Sub-kT spectral fluctuations

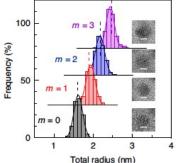
J. Lim, Y-H. Park, V.I. Klimov, *Nature Mater.* **18**, 249 (2019)

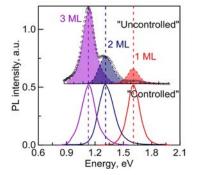
O. Kozlov... V.I. Klimov, *Science* **365**, 672 (2019)


CdSe/HgS/CdS QDs: Near-IR Upgrade for CdSe/CdS QDs &

"Nonblinking" NIR CdSe/HgS/CdS QDs with atomically defined HgS interlayer

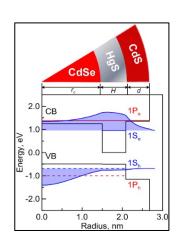


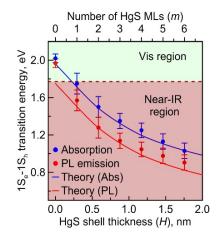

Thermodynamically controlled L-b-L growth



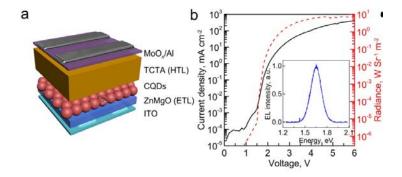
Atomic-level control of the HgS interlayer thickness

V. Sayevich, ... V.I. Klimov, Nature Nanotech. March 25 (2021)

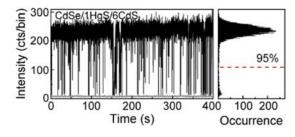




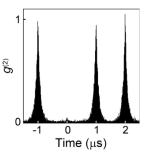
CdSe/HgS/CdS QDs: Perfect NIR Emitters



Highly efficient, spectrally tunable NIR emitters (QY > 60%)


Excellent electroluminescent materials (NIR-LEDs)

Highly stable single-photon emitters


Nearly blinkingfree emission

 $f_{ON} > 95\%$

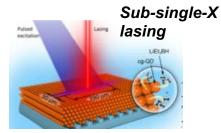
Perfect singlephoton purity

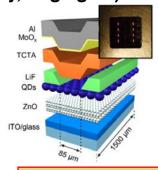
 $F_{\rm spp} > 97\%$

Photon Amplification

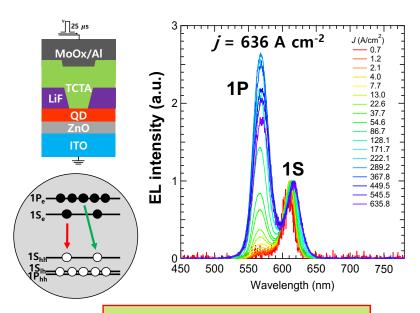
High-sensitivity detection using single-photon QD amplifiers (sub-threshold laser)

DFB-cavity-enhanced NC-SPE


Spectrally matched **DFB-NC** amplifier


Si APD

cg-QDs are excellent optical gain materials (suppressed Auger decay, large gain)

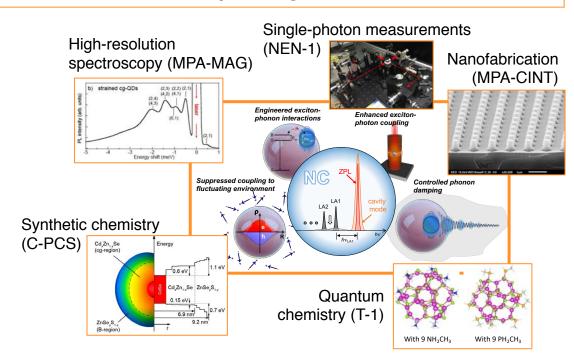


Optical gain with electrical pumping

O. Kozlov, ...V.I. Klimov, Science **365**, 672 (2019) J. Lim, Y.S. Park, V.I. Klimov, Nature Mater. 17, 42 (2018)

Complete 1S and 1P population inversion using pulsed, current focusing QD-LEDs

H. Jung, Y.S. Park, V.I. Klimov, Nature Phot. in press (2021)


Ongoing & Future Research

Primary Challenge: Achieve photon indistinguishability via control of extrinsic and intrinsic mechanisms for dephasing

Path forward

- Manipulation of NC electronic wavefunctions, surfaces, and matrices to eliminate spectral instabilities due to fluctuating environment
- Manipulation of NC electronic states, phonon spectra and matrices to suppress dephasing due to electronphonon scattering
- Exploiting resonant coupling to optical cavities to enhance and sharpen the coherent exciton line and suppress incoherent phonon replicas.

Acknowledgements

Nanotechnology & Advanced **Spectroscopy Team**

Quantum Photonics LDRD-DR Project

Victor Klimov (C-PCS)

Sergei Tretiak (T-1)

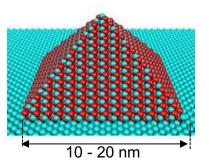
Sergei Ivanov (MPA-CINT)

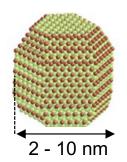
C-PCS **MPA-MAG MPA-CINT** NEN-1 T-1

Scott Crooker (MPA-MAG)

(NEN-1)

Sayevich (PD)




Colloidal Quantum Dots as Single-Photon Emitters

InAs/GaAs QDs (T = 4.5 K)
 Single-photon purity = 99.1%
 Indistinguishability = 97.5%

Dusanowski, et al., *Phys. Rev. Lett.* **122**, 173602 (2019)

- Free-standing particles: uniquely suited for applications in imaging and sensing (by integrating with, e.g., scan probes)
- Easily scalable structures prepared using non-clean room techniques (e.g., inkjet printing)
- Very inexpensive

Epitaxial quantum dots

- Small inter-level spacing: Need cryogenic-cooling (liquid helium)
- Limited range of accessible wavelengths (~800 1100 nm; defined by InGaAs band-gap)
- Difficulty for on-chip integration with Si circuits (lattice mismatch)
- Dot-to-dot variability in emission energy (size polydispersity)

Colloidal quantum dots

- Can serve as SPEs at elevated T: large inter-level spacing ($>>k_BT$), strongly confined acoustic phonons
- Readily tunable emission via size-controlled band-gap (UV – visible – IR)
- Chemically processable particles: easy to integrate with electronic and photonic circuits
- In principle, can be prepared as monodispersed structures with identical emission energies

